K Line

EN

K121

Universal isolated transmitter with 2 wire - loop powered

Installation Manual

Contents:
- General specifications
- Technical features
- Diagram: Load resistance vs minimum functioning voltage.
- Installation / Connections rules
- Electrical connections
- Table: Input range and accuracy of measure
- Factory settings and advanced settings.

SENECA s.r.l.
Via Austria, 26 - 35127 - PADOVA - ITALY
Tel. +39.049.8705355 - 8705359 - Fax +39.049.8706287
For manuals and configuration software, see www.seneca.it

This document is property of SENECA srl. Duplication and reproduction are forbidden, if not authorized. Contents of the present documentation refers to products and technologies described in it. All technical data contained in the document may be modified without prior notice. Content of this documentation is subject to periodical revision.
GENERAL SPECIFICATIONS

- Conversion and transmission of the input read into a normalized signal current in the output for the loop 4 ..20 mA that is connected with 2 wire connection.
- RTD input (PT100 - 500 - 1000, Ni100) with 2, 3 or 4 wire connections.
- Voltage input ± 30 V.
- Voltage input ± 150 mV
- Current input ± 24 mA.
- Potentiometer input with resistance between 500 Ω and 10 KΩ.
- Resistance input up to 1760 Ω.
- Reduced response time (Voltage and Current input): 140 ms
- Reduced response time (Other inputs): < 620 ms
- High precision: 0,1%.
- 16-bit measurement conversion.
- 1500 Vac output isolation.
- Compact size 93 x 102,5 x 6,2 mm.

TECHNICAL FEATURES

Output / Power supply

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>7 ..30 V<sub>DC</sub></td>
</tr>
<tr>
<td>Power consumption</td>
<td>< 660 mW</td>
</tr>
<tr>
<td>Current output</td>
<td>4 ..20 mA</td>
</tr>
<tr>
<td>Load resistance</td>
<td>1 kΩ @ 28 Vdc, 21 mA (see the diagram Load resistance vs minimum functioning voltage).</td>
</tr>
<tr>
<td>Resolution</td>
<td>2 µA (> 13 bit)</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>< 100 ppm, typical 30 ppm</td>
</tr>
<tr>
<td>Output in case of over-range</td>
<td>+ 2,5% of end scale, - 2,5% of start scale</td>
</tr>
<tr>
<td>Output in case of fault</td>
<td>+ 5% of end scale, - 5% of start scale</td>
</tr>
<tr>
<td>Current output protection</td>
<td>~ 30 mA</td>
</tr>
</tbody>
</table>

Potentiometer input

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of potentiometer</td>
<td>From 500 Ω to 10 kΩ</td>
</tr>
<tr>
<td>Input impedance</td>
<td>10 MΩ</td>
</tr>
</tbody>
</table>

Thermocouple input

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input impedance</td>
<td>10 MΩ</td>
</tr>
<tr>
<td>Cold junction compensation</td>
<td>-40 ..65 ± 1,5°C; Settable</td>
</tr>
<tr>
<td>Sensor fault detection</td>
<td>Yes; Settable</td>
</tr>
</tbody>
</table>

RTD input / Resistance

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exitation current</td>
<td>375 µA</td>
</tr>
<tr>
<td>Maximum cable resistance</td>
<td>25 Ω</td>
</tr>
<tr>
<td>Influence cable resistance</td>
<td>0,003 Ω/Ω</td>
</tr>
</tbody>
</table>
Connections

- **Connections**: 8 Spring terminals

Dimensions / Box

- **Dimensions**: L: 93 mm; H: 102.5 mm; W: 6.2 mm
- **Box**: PBT, Black

Environmental condition

- **Operating temperature**: -20 ..+65°C
- **Humidity**: 30 ..90% a 40°C non condensing
- **Storage temperature**: -20 ..+85°C
- **Degree protection**: IP20

Standards

The module is conforming to the following regulations:

- **EN61000-6-4/2002** (Electromagnetic emission, industrial environment).
- **EN61000-6-2/2006** (Electromagnetic immunity, industrial environment).
- **EN61010-1/2001** (safety).

It is designed and built in accordance with the requirements of Directive ATEX 2014/34/UE according to European standards:

SUPPLEMENTARY NOTE FOR USE:

Use in environment with 2 or less pollution degree - EN60664-1..
INSTALLATION / CONNECTIONS RULES

Installation on DIN46277 rail

The module is designed to be installed, in vertical position, on DIN 46277 rail. For the best module performance and duration, avoid to place cables raceways and other objects that could obstruct the ventilation.

Never install the modules near heat sources. The module installation is advised in the bottom of the control panel.

Inserting the module in the rail

1) Attach the module in the upper part of the rail (as shown in the picture 2a).

2) Press the module downwards.

Removing the module from the rail

1) Apply leverage using a screwdriver (as shown in the picture 2b)

2) Rotate the module upwards.

DIAGRAM: LOAD RESISTANCE VS MINIMUM FUNCTIONING VOLTAGE

![Diagram: Load Resistance vs Minimum Functioning Voltage](image)

Fig. 1

Fig. 2a

Fig. 2b
The signal input may come from thermocouple J, K, R, S, T, B, E, N (EN 60584) sensors or RTD (thermoresistance) like Pt100, Ni100, Pt500, Pt1000 and Ni100. K121 besides can read voltages in V and mV, current in mA, and resistances.

For the maximum performance it’s recommended to use a shielded cable.

See Fig. 4 below for input connections.
RTD 2 wire connection

This connection can be used for short distances (< 10 m) between module and probe, you should note that it adds an error (which may be removed by software programming) equivalent to the resistance contributed by the connection cables to the measurement. The module must be programmed by PC for 2 wire connection.

RTD 3 wire connection

This connection can be used for medium-long distances (> 10 m) between module and probe. The instrument performs a compensation for the resistance of the connection cables. For a correct compensation the resistance value of each conductor must be the same. The module must be programmed by PC for 3 wire connection.

RTD 4 wire connection

This connection can be used for medium-long distances (> 10 m) between module and probe. Provides the maximum precision because the instrument measures the resistance of the sensor independently of the resistance of the connection cables. The module must be programmed by PC for 4 wire connection.

Output and power supply from loop 4 ..20 mA

Current Loop connection (regulated current). The use of shielded cables is recommended for the electric connections.

Note: in order to reduce the instrument's dissipation, we recommend guaranteeing a load of > 250Ω to the current output.

Table: Output signal limit / fault or over-range

<table>
<thead>
<tr>
<th>Output signal limit</th>
<th>Over-range / ± 2.5 %</th>
<th>Fault ± 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mA</td>
<td>20.4 mA</td>
<td>21 mA</td>
</tr>
<tr>
<td>4 mA</td>
<td>3.6 mA</td>
<td>< 3.4 mA</td>
</tr>
</tbody>
</table>
Table of accuracy measure: The greater of the sum of (A+B) and C

<table>
<thead>
<tr>
<th>Input type</th>
<th>A : % of measure</th>
<th>B : % of span</th>
<th>C : Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple J,K,T,N,E</td>
<td>0.05 %</td>
<td>0.05 %</td>
<td>0.5 °C</td>
</tr>
<tr>
<td>Thermocouple B, R, S</td>
<td>0.05 %</td>
<td>0.05 %</td>
<td>1 °C</td>
</tr>
<tr>
<td>RTD</td>
<td>0.05 %</td>
<td>0.05 %</td>
<td>0.1 °C</td>
</tr>
<tr>
<td>Resistance F.S. = 400 Ω</td>
<td>0.05 %</td>
<td>0.05 %</td>
<td>40 mΩ</td>
</tr>
<tr>
<td>Resistance F.S. = 1760 Ω</td>
<td>0.05 %</td>
<td>0.05 %</td>
<td>200 mΩ</td>
</tr>
<tr>
<td>Voltage mV</td>
<td>0.05 %</td>
<td>0.05 %</td>
<td>15 μV</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>0.05 %</td>
<td>0.05 %</td>
<td>3 mV</td>
</tr>
<tr>
<td>Voltage V</td>
<td>0.05 %</td>
<td>0.05 %</td>
<td>3 mV</td>
</tr>
<tr>
<td>Current</td>
<td>0.05 %</td>
<td>0.05 %</td>
<td>2 μA</td>
</tr>
</tbody>
</table>
FACTORY SETTINGS AND ADVANCED SETTINGS

Factory settings

- Cold junction compensation: YES.
- Input filter: DISABLE.
- Reversed output: NO.
- TC Type: K.
- Measurement range start: 0°C.
- Measurement full-scale: 1000 °C.
- Output signal in case of fault: Towards the top of the output range.
- Over-range: YES, at 2,5% over-range values is accepted, at 5% over-range value is considered a fault.

Advanced setting

- Setting of the start scale and full scale value.
- RTD: 2 wire, 3 wire, 4 wire connections.
- Measure filter: Enable / Disable
- Output: Normal (4 ..20 mA) or reversed (20 ..4 mA).
- Selection of input type.
- Cable resistance compensation for 2 wires measurement.
- Output signal in case of fault: towards the bottom or towards the top of the output range
- Over-range: NO (the fault alone causes at 2,5% over range value) or YES (at 2,5 over-range value is accepted, at 5% over range value is considered a fault).
- Cold junction compensation: YES / NO.

Software configuration

The configuration by PC use (see the drawing below) is possible with the following accessories

S117P (USB/RS232 /TTL) converter

Variations of standard parameters are possible by using configuration softwares. See www.seneca.it to consult the download section.