One Input to Two Outputs with Full Isolation

- Power
- Split Process Signals for Control and Validation
- Input and Output LoopTracker LEDs
- Output Test Button for Each Channel
- Built-In Loop Power Supplies for Sink/Source I/O

Potentiometer Input Ranges

3 wire connection and full potentiometer travel is required. Consult factory for other ranges and configurations.

- 1 VDC excitation provided to potentiometer
- Minimum range: 0-100 \(\Omega \)
- Maximum range: 0-1 \(\Omega \)

Input Impedance

100 \(\Omega \) to 1 \(\Omega \) minimum

Input Protection, Common Mode

100 dB minimum

LoopTracker

Variable brightness LEDs indicate I/O loop level and status. One for input, one for each output.

Channel 1 and Channel 2 DC Output Ranges

Factory configured, please specify for each output channel.

- Voltage: 0-1 VDC to 0-10 VDC, 10 mA max up to 20 VDC with M19, M29, M39
- Bipolar voltage: \(\pm 1 VDC \) to \(\pm 10 VDC \)
- Current: 0-1 mA DC to 0-20 mA DC, 4-20 mA DC
- 20 V compliance, 1000 \(\Omega \) at 20 mA

Output Calibration

Multi-turn zero and span potentiometers for each output channel. These power supplies can be selectively wired for sinking or sourcing mA output.

Output Ripple and Noise

Less than 10 mVrms

Linearity

Better than \(\pm 0.1 \% \) of span

Ambient Temperature Range and Stability

\(-10^\circ C \) to \(+60^\circ C \) operating ambient

Better than \(\pm 0.04 \% \) of span per \(^\circ C \) stability

Response Time

70 milliseconds typical

DF fast response option, consult factory

Isolation

Full 4-way, 1200 Vrms minimum

Installation Environment

IP 40, requires installation in panel or enclosure with adequate ventilation.

For use in Pollution Degree 2 Environment

Mount vertically (as shown in picture) to a 35 mm DIN rail allowing minimum 1” (25 mm) above and below housing vents for air circulation.

Power

85-265 VAC, 50/60 Hz or 60-300 VDC, 6 W maximum

D versions: 9-30 VDC or 10-32 VAC 50/60 Hz, 6 W maximum

Dimensions and Connectors

1.78” \(W \) x 4.62” \(H \) x 4.81” \(D \)

45 mm \(W \) x 117 mm \(H \) x 122 mm \(D \)

Eight 4-terminal removable connectors, 14 AWG max wire size

Description

The APD 3393 IsoSplitter accepts a potentiometer input and provides two optically isolated DC voltage or current outputs that are linearly related to the input. The input range and each output range are independent and can be specified as required.

This provides an economical solution when one signal must be sent to two different devices.

Typical applications include isolation, output splitting, output device separation and redundancy (i.e. to prevent failure of the entire loop if one device fails), or a combination of these.

The voltage drop across a stable 1 VDC excitation source is measured allowing any full-range 3-wire potentiometer to be used.

The input signal is filtered, amplified, split, and then passed through an opto-coupler to the output stages. Full 4-way isolation (input, output 1, output 2, power) make this module useful for loop ground elimination, common mode signal rejection, and noise pickup reduction.

I/O Sink/Source Versatility

Standard on the APD 3393 are 20 VDC loop excitation supplies for each output channel. These power supplies can be selectively wired for sinking or sourcing allowing use with any combination of powered or unpowered milliamp I/O devices.

How to Order

Models are factory ranged. See I/O ranges above left.

- Please specify ranges and options on order

Input range

- Channel 1 output range
- Channel 2 output range

See options at right

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD 3393</td>
<td>IsoSplitter 1 input to 2 outputs</td>
<td>85-265 VAC, 50/60 Hz or 60-300 VDC</td>
</tr>
<tr>
<td>APD 3393 D</td>
<td></td>
<td>9-30 VDC or 10-32 VAC</td>
</tr>
</tbody>
</table>

LoopTracker

API exclusive features include three LoopTracker LEDs (green for input, red for each output) that vary in intensity with changes in the process input and output signals.

These provide a quick visual picture of your process loop at all times and can greatly aid in saving time during initial startup and troubleshooting.

Output Test

An API exclusive feature includes output test buttons for each channel to provide a fixed output (independent of the input) when held depressed. A test button is provided for each output channel. The output test greatly aids in saving time during initial startup and/or troubleshooting.

The test output level for each channel is potentiometer adjustable from 0 to 100% of the output span.

Terminals are provided to operate the test functions remotely for each channel. This also allows use as a remote manual override to provide a temporary fixed output if desired.

Options and Accessories

- **Options**—add to end of model number
 - R1 Channel 1 I/O reversal (ie. 4-20 mA in to 20-4 mA out)
 - R2 Channel 2 I/O reversal (ie. 4-20 mA in to 20-4 mA out)
 - R3 Channel 1 and channel 2 I/O reversal
 - M19 Channel 1 high voltage output >10 V up to 20 V
 - M29 Channel 2 high voltage output >10 V up to 20 V
 - M39 Channel 1 and channel 2 high voltage output
 - DF Fast response time, consult factory. DF option will cause output noise levels to be greater than standard specifications.

- **U** Conformal coating for moisture resistance

- **Accessory**—order as separate line item
 - API BP4 Spare removable 4 terminal plug, black
Precautions
WARNING! All wiring must be performed by a qualified electrician or instrument engineer. See diagram for terminal designations and wiring examples. Consult factory for assistance.
WARNING! Avoid shock hazards! Turn signal input, output, and power off before connecting or disconnecting wiring, or removing or installing module.

Précautions
ATTENTION! Tout le câblage doit être effectué par un électricien ou ingénieur en instrumentation qualifié. Voir le diagramme pour désignations des bornes et des exemples de câblage. Consulter l’usine pour assistance.
ATTENTION! Évitez les risques de choc! Fermez le signal d’entrée, le signal de sortie et l’alimentation électrique avant de connecter ou de déconnecter le câblage, ou de retirer ou d’installer le module.

API maintains a constant effort to upgrade and improve its products. Specifications are subject to change without notice. See api-usa.com for latest product information. Consult factory for your specific requirements.

WARNING: This product can expose you to chemicals including nickel which are known to the State of California to cause cancer or birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov

Electrical Connections
Polarity must be observed for signal wiring connections. If the input and/or output do not function, check wiring and polarity.

Each product is factory configured to your exact input and output ranges as indicated on the serial number label.

Outputs
For milliamp output ranges determine if your devices provide power to the current loop or if the loop must be powered by the APD module. Typical voltage may be 9-24 VDC at your device’s terminals if it provides power to the loop.

Type of Device for Output Channel 1

<table>
<thead>
<tr>
<th>Measuring or recording device accepts a voltage input.</th>
<th>– Terminal + Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring/recording device accepts a mA (current) input and the input is unpowered or passive. APD module provides the loop power.</td>
<td>3 (+) 4 (+)</td>
</tr>
<tr>
<td>Measuring or recording device accepts a mA (current) input and provides power to the current loop.</td>
<td>2 (+) 3 (+)</td>
</tr>
</tbody>
</table>

Type of Device for Output Channel 2

<table>
<thead>
<tr>
<th>Measuring or recording device accepts a voltage input.</th>
<th>– Terminal + Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring/recording device accepts a mA (current) input and the input is unpowered or passive. APD module provides the loop power.</td>
<td>7 (+) 8 (+)</td>
</tr>
<tr>
<td>Measuring or recording device accepts a mA (current) input and provides power to the current loop.</td>
<td>6 (+) 7 (+)</td>
</tr>
</tbody>
</table>

Potentiometer Input

The potentiometer must be connected to all three signal input terminals as shown. 0-100% of the potentiometer range must be used. A stable 1 VDC source is used to excite the potentiometer. Potentiometer input and/or output do not function, check wiring and polarity.

Potentiometer Input Terminal

Full scale or high side of potentiometer	17 (+1 VDC)
Zero or low end of potentiometer	18 (+)
Potentiometer wiper arm	19

Module Power Terminals

Check label for module, operating voltage to make sure it matches available power. The power supplies are fuse protected and the unit may be returned to API for fuse replacement.

When using DC power, either polarity is acceptable, but for consistency, wire positive (+) to terminal 25 and negative (–) to terminal 28.

Mounting to a DIN Rail

Install module vertically on a 35 mm DIN rail in a protective enclosure away from heat sources. Do not block air flow. Allow 1” (25 mm) above and below housing vents for air circulation.

1. Tilt front of module down and position the lower spring clips against the bottom edge of DIN rail.
2. Push front of module upward until upper mount snaps into place.

Removal

Avoid shock hazards! Turn signal input, output, and power off.

1. Push on bottom back of module.
2. Tilt front of module downward to release upper mount from top edge of DIN rail.
3. The module can now be removed from the DIN rail.

Calibration

Front-mounted Zero and Span potentiometers for each channel can be used to compensate for load and lead variations.

1. Apply power to the module and allow a minimum 30 minute warm up time.
2. Using an accurate calibration source, provide an input to the module equal to the minimum input required for the application.
3. Using an accurate measurement device for the output, adjust the Zero potentiometer for the exact minimum output desired. The Zero control should only be adjusted when the input signal is at its maximum. This will produce the corresponding minimum output signal. For example: 4 mA for a 4-20 mA output or –10 V for a ±10 V output.
4. Set the input at maximum, and then adjust the Span pot for the exact maximum output desired. The Span control should only be adjusted when the input signal is at its maximum. This will produce the corresponding maximum output signal. Example: for 4-20 mA output, the Span control will provide adjustment for the 20 mA or high end of the signal.
5. Repeat adjustments for both output channels for maximum accuracy.

Output Test Function

When the Test button is depressed it will drive the output with a known good signal that can be used as a diagnostic aid during initial start-up or troubleshooting. When released, the output will return to normal.

Each Test Cal. potentiometer is factory set to approximately 0 to 100% of the output span. Press and hold the Test button and adjust the corresponding Test Cal. potentiometer for the desired output level.

They may optionally be externally wired for remote test operation or a manual override. See wiring diagram at right.

Operation

The APD 3393 IsoSplitter™ accepts a potentiometer input and provides two optically isolated DC voltage or current outputs that are linearly related to the input. The green LoopTracker® input LED provides a visual indication that a signal is being sensed by the input circuitry of the module. It also indicates the input signal strength by changing in intensity as the process changes from minimum to maximum.

If the LED fails to illuminate, or fails to change in intensity as the process changes, check the module power or signal input wiring.

The two red LoopTracker output LEDs provide a visual indication that the output signals are functioning. They become brighter as the input and each corresponding output change from minimum to maximum.

For a current output the red LED will only light if the output loop current path is complete. For either current or voltage outputs, failure to illuminate or a failure to change in intensity as the process changes may indicate a problem with the module power or signal output wiring. Note that it may be difficult to see the LEDs under bright lighting conditions.

17 Full Scale* 18 Minimum* 19 Wiper Arm
*May be switched for reverse output

Cu 60/75°C conductors 14 AWG max.

To maintain full isolation avoid combining power supplies in common with inputs, outputs, or unit power.

Instructions APD 3393

APD 3393 Potentiometer for DC Isolated Signal Splitter Transmitter

Output Test 1 Output Test 2

Wire terminal torque 0.5 to 0.6 Nm or 4.4 to 5.3 in-lbs

To avoid damage to the module, do not make any connections to unused terminals.

mA output; determine if receiving device has a passive or powered input. The module can be wired for a sinking or sourcing mA output.

* To avoid damage to the module, do not leave any unused mA outputs disconnected. Use a 1000 Ohm 1/2 Watt resistor across unused mA terminals.

Phone: 800-949-7502 Fax: 800-949-7502

api-usa.com